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Abstract
A noncommutative (NC) sphere is introduced as a quotient of the enveloping
algebra of the Lie algebra su(2). Following Gurevich and Saponov (2001
J. Phys. A: Math. Gen. 34 4533–69) and using the Cayley–Hamilton identities
we introduce projective modules which are analogues of line bundles on the
usual sphere (we call them quantum line bundles) and define a multiplicative
structure in their family. Also, we compute a pairing between quantum line
bundles and finite-dimensional representations of the NC sphere in the spirit
of the NC index theorem. Moreover, we introduce projective modules being
NC counterparts of tangent vector bundles and those of differential forms and
define an analogue of the de Rham complex making use of these modules.

PACS number: 02.40.Gh
Mathematics Subject Classification: 17B37, 81R50

1. Introduction

One of the basic notions of the usual (commutative) geometry is that of the vector bundle on
a variety. As was shown in [Se] the category of vector bundles over a regular affine algebraic
variety X is equivalent to the category of finitely generated projective modules over the algebra
A = K(X) which is the coordinate ring of the given variety X (a similar statement for smooth
compact varieties was shown in [Sw]). Hereafter K stands for the basic field (always C or R).

The language of projective modules is perfectly adapted to the case of a noncommutative
(NC) algebra A. Any such (say, right) A-module can be identified with an idempotent
e ∈ Mn(A) for some natural n. These idempotents play a key role in all approaches to NC
geometry, in particular, in a NC version of the index formula of Connes ([C, L]).

The problem of constructing projective modules over physically meaningful algebras is
of great interest. The C

∗-algebras (apart from commutative ones) are mostly studied from
this viewpoint. Besides, there are very few examples known. As an example let us evoke the
paper [Ri] where projective modules over NC tori are studied (also cf [KS] and the references
therein). In recent times a number of papers have appeared dealing with some algebras (less

0305-4470/02/459629+15$30.00 © 2002 IOP Publishing Ltd Printed in the UK 9629

http://stacks.iop.org/ja/35/9629


9630 D Gurevich and P Saponov

standard than NC tori and those arising from the Moyal product) for which certain projective
modules are constructed by hand (cf for example [DL, LM] and the references therein).

Nevertheless, there exists a natural method suggested in [GS] of constructing projective
modules over NC analogues of K(O), where O is a generic3 SU(n)-orbit in su(n)∗ including
its ‘q-analogues’ arising from the so-called reflection equation (RE) algebra. This method is
based on the Cayley–Hamilton (CH) identity for matrices with entries belonging to the NC
algebras in question. (However, it seems very plausible that other interesting examples of ‘NC
varieties’ can be covered by this method. In particular, by making use of the CH identity for
super-matrices, cf [KT], it is possible to generalize our approach to certain super-varieties.)

The idea of the method consists of the following. Consider a matrix L = ∥∥lij∥∥ subject to
the RE related to a Hecke symmetry (cf [GPS])4. Then it satisfies a polynomial identity

Lp +
p∑
i=1

ai(L)L
p−i = 0 (1.1)

where coefficients ai(L) belong to the centre of the RE algebra generated by lij .
Passing to a specific limit in the RE algebra we get a version of the CH identity for the

matrix whose entries lij commute as follows:[
lij , l

k
l

] = h̄
(
δkj l

i
l − δil l

k
j

)
(1.2)

i.e. lij generate the Lie algebra gl(n)h̄ where gh̄ stands for a Lie algebra whose Lie bracket
equals h̄[ , ], where [ , ] is the bracket of a given Lie algebra g. Introducing the parameter h̄
allows us to consider the enveloping algebras as deformations of commutative ones. (Let us
note that this type of CH identity has been known since 1980s, cf [Go].)

Similar to the general case the coefficients of the corresponding CH identity belong to
the centre Z[U(gl(n)h̄)] of the enveloping algebra U(gl(n)h̄). Therefore, by passing to a
quotient5

U(gl(n)h̄)/{z− χ(z)}
where z ∈ Z[U(gl(n)h̄)] and

χ : Z[U(gl(n)h̄)] → K

is a character we get a CH identity with numerical coefficients

Lp +
p∑
i=1

αiL
p−i = 0 αi = χ(ai(L)). (1.3)

Consider now the corresponding polynomial equation

λp +
p∑
i=1

αiλ
p−i = 0 (1.4)

and assume its roots to be pairwise distinct. Then we can assign an idempotent (or what is the
same, a one-sided projective module) to each root. For quasiclassical Hecke symmetries (see
footnote 4) these projective modules are deformations of line bundles on the corresponding
classical variety. For this reason we call them quantum line bundles (q.l.b.).
3 An orbit is called generic if it contains a diagonal matrix with pairwise distinct eigenvalues.
4 A Hecke symmetry is a Hecke-type solution of the quantum Yang–Baxter equation. There exist different types
of Hecke symmetries: quasiclassical ones being deformations of the classical flip and non-quasiclassical ones (a big
family of such Hecke symmetries was introduced in [G]). Let us note that a version of the CH identity exists for any
of them independently of the type.
5 Hereafter {X} stands for the ideal generated by a set X in the algebra in question.
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In this paper, we constrain ourselves to the case arising from the Lie algebra gl(2).
Namely, we describe a family of projective modules over the algebra

Ah̄ = U(sl(2)h̄)/{�− α} (1.5)

where � stands for the Casimir element in the algebra U(sl(2)h̄).6 We consider this algebra
as a NC counterpart of a hyperboloid.

In order to get a NC counterpart of the sphere we should pass to the compact form of
the algebra in question. However, it does not affect the CH identity since it is indifferent to a
concrete form (compact or not) of the algebra.

To describe our method in more detail we begin with the classical (commutative) case.
Put the matrix

L =
(

ix −iy + z
−iy − z −ix

)

in correspondence to a point (x, y, z) ∈ S2. This matrix satisfies the CH identity (1.3) where
p = 2, α1 = 0, α2 = x2 + y2 + z2 = const �= 0.

Let λ1 and λ2 = −λ1 be the roots of equation (1.3). To each point (x, y, z) ∈ S2 we assign
the eigenspace of the above matrix L corresponding to the eigenvalue λl, l = 1, 2. Thus, we
come to a line bundle El which will be called basic.

Various tensor products of the basic bundles El, l = 1, 2, give rise to a family of derived
or higher line bundles

Ek1,k2 = E
⊗k1
1 ⊗ E

⊗k2
2 k1, k2 = 0, 1, . . . .

Note, that certain line bundles of this family are isomorphic to each other. In particular, we
haveE1 ⊗E2 = E0,0 whereE0,0 stands for the trivial line bundle. In general, the line bundles

Ek1,k2 and Ek1+l,k2+l l = 1, 2, . . .

are isomorphic to each other. So, any line bundle is isomorphic either to Ek1 or to Ek2 for some
k = 0, 1, . . . (we assume that E0

1 = E0
2 = E0,0). Finally, we conclude that the Picard group

Pic(S2) of the sphere (which is the set of classes of isomorphic line bundles equipped with the
tensor product) is nothing but Z since any line bundle can be represented as Ek1 with a proper
k ∈ Z, where we put Ek1 = E⊗k

1 for k > 0 and Ek1 = E
⊗(−k)
2 for k < 0.

It is worth emphasizing that we deal with an algebraic setting: the sphere and total spaces
of all bundles in question are treated as real or complex affine algebraic varieties (depending
on the basic field K).

Now, let us pass to the NC case. Using the above NC version of the CH identity one can
define NC analogues El(h̄), l = 1, 2, of the line bundles El . We will call them basic q.l.b.
(they are defined in section 2).

Unfortunately, for a NC algebra A the tensor product of two or more one-sided (say,
right) A-modules is not well defined. So, the construction of derived line bundles cannot be
generalized to a NC case in a straightforward way. Nevertheless, using the CH identities for
some ‘extensions’ L(k), k = 2, 3 . . . of the matrix L to higher spins (in the following k = 2 ×
spin) we directly construct NC counterpartsEk1,k2(h̄) of the above derived line bundles. Thus,
for any k = 2, 3, . . . (with k1 + k2 = k) we have k + 1 derived q.l.b.

In section 3, we explicitly calculate the CH identity for the matrix L(2) and state that such
an identity exists for any matrix L(k), k > 2.

6 Note that in fact we deal with the Lie algebra sl(2)h̄ instead of gl(2)h̄ since the trace of the matrix L is always
assumed to vanish. The studies of such quotients were initiated by Dixmier (cf [H] and the references therein). In
certain papers the compact form of this algebra is called a fuzzy sphere.
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However, as usual we are interested in projective modules (in particular, q.l.b.) modulo
natural isomorphisms. Thus, we show that the q.l.b. E1,1(h̄) is isomorphic to the trivial one
E0,0(h̄) which is nothing but the algebra Ah̄ itself. We also conjecture that the q.l.b.

Ek1,k2(h̄) and Ek1+l,k2+l(h̄) (1.6)

are isomorphic to each other. If so, any q.l.b. is isomorphic to Ek,0(h̄) or E0,k(h̄) similar to
the commutative case.

Then we define an associative product in the family of q.l.b. over the NC sphere in a
natural way. By definition, the product of two (or more) q.l.b. over the NC sphere is the NC
analogue of the product of their classical counterparts. Otherwise stated, we set by definition

Ek1,k2(h̄) · El1,l2(h̄) = Ek1+l1,k2+l2(h̄)

(in particular, we have E1(h̄) · E2(h̄) = E1,1(h̄) and in virtue of the above-mentioned result
this product is isomorphic to E0,0(h̄)). The family of all modules Ek1,k2(h̄) equipped with
this product is a semigroup. It is denoted prePic(Ah̄) and called prePicard. Assuming the
above conjecture to be true we get the Picard group Pic(Ah̄) of the NC sphere (it is a group
since any of its elements becomes invertible)7. All these notions are introduced in section 4.
Moreover, in this section we compute the pairing between the q.l.b. in question and irreducible
representations of the algebra Ah̄ in the spirit of the NC index theorem.

In the last section we consider NC analogues of some ‘geometrical’ vector bundles, i.e.
those coming in differential calculus. More precisely, we present analogues of tangent vector
bundles and those of differential forms. The latter objects are used in order to define a new
version of the NC de Rham. We complete the paper by comparing our version of the NC de
Rham complex with others known in this area.

To complete the introduction we emphasize that our approach is in principle applicable to
the NC analogue of any generic orbit in su(n)∗ (and even to their ‘q-analogues’ arising from
the RE algebra) but the calculation of the higher CH identities becomes much more difficult
as the degree of the CH identity for the initial matrix becomes greater than 2. We refer the
reader to the paper [GLS] where the mentioned ‘q-analogues’ of the above NC sphere are
considered.

2. Basic quantum line bundles on the NC sphere

Consider the Lie algebra gl(2)h̄ which is generated by the elements a, b, c and d satisfying
the following commutation relations:

[a, b] = h̄b [a, c] = −h̄c [a, d] = 0

[b, c] = h̄(a − d) [b, d] = h̄b [c, d] = −h̄c.
The nonzero numerical parameter h̄ is introduced into the Lie brackets for future convenience.
This parameter can evidently be equated to one by the renormalization of the generators. In
this case we come to the conventional Lie algebra gl(2).

Let us form a 2 × 2 matrix L whose entries are the above generators

L =
(
a b

c d

)
.

7 Let us note thatK0 of the NC sphere equipped only with the additive structure was calculated in [H]. We are rather
interested in quantum line bundles. Once they are defined other projective modules can be introduced as their direct
sums.
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It is a matter of straightforward checking that this matrix satisfies the following second-order
polynomial identity:

L2 − (tr + h̄)L + (� + h̄ tr/2)id = 0 (2.1)

where

tr = trL = a + d � = ad − (bc + cb)/2.

As h̄ → 0 we get the classical CH identity for a matrix with commutative entries.
In order to avoid any confusion we want to stress that we only deal with the enveloping

algebraU(gl(2)h̄) (and some of its quotients) and we disregard its (restricted) dual object—the
algebra of functions on the Lie groupGL(2). Our immediate aim consists in constructing some
‘derived’ matrices with entries from U(gl(2)h̄) satisfying some ‘higher’ CH identities. It will
be done by some sort of coproduct applied to the matrix L and restricted onto the symmetric
component. However, we do not use any coalgebraic (and hence any Hopf) structure of the
algebra U(gl(2)h̄) itself.

Remark 1. A version of the CH identity for matrices with entries from U(gl(n)) has been
known for a long time (cf [Go]). However, traditionally one deals with the CH identity in a
concrete representation of the algebra gl(n) while we prefer to work with the above universal
form of the CH identity. A way of obtaining the CH identity by means of the so-called Yangians
was suggested in [NT]. In [G-T] another NC version of the CH identity was presented. The
coefficients of the polynomial relation suggested that there are diagonal (not scalar) matrices.
But such a form of the CH identity is not suitable for our aims.

Since the elements tr and � from (2.1) belong to the centre Z[U(gl(2)h̄)] of the algebra
U(gl(2)h̄) one can consider the quotient

Ah̄ = U(gl(2)h̄)/{tr,� − α} α ∈ K.

Taking into consideration the fact that the trace of the matrix L vanishes we can also treat this
algebra as quotient (1.5). In what follows the algebra Ah̄ will be called a NC variety (or more
precisely, a NC hyperboloid).

Being restricted to the algebra Ah̄ the CH identity becomes a polynomial relation in L
with numerical coefficients

L2 − h̄L + α id = 0. (2.2)

Denote λ1 and λ2 as the roots of corresponding polynomial equation (see (1.4)) that is

λ1 = (h̄−
√
h̄2 − 4α)/2 λ2 = (h̄ +

√
h̄2 − 4α)/2.

Let us suppose that λ1 �= λ2. If h̄ = 0 this condition means that the cone corresponding
to the case � = α = 0 is forbidden. However, if h̄ �= 0 we have h̄2 − 4α �= 0.

We say that λ1 and λ2 are eigenvalues of the matrix L. Of course, this does not mean
the existence of an invertible matrix A ∈ M2(Ah̄) such that the matrix A · L · A−1 becomes
diagonal: diag(λ1, λ2).

Remark 2. If an algebra A is not a field, the invertibility of a matrix A ∈ Mn(A) is an
exceptional situation. As follows from the CH identity for the matrix L it is invertible.
However, it is not so even for small deformations of L.

It is easy to see that the matrices

e10 = (λ2 id − L)/(λ2 − λ1) e01 = (λ1 id − L)/(λ1 − λ2) ∈ M2(Ah̄) (2.3)

are idempotents and e10 · e01 = 0.
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Denote E1(h̄) and E2(h̄) as the projective modules (also called q.l.b.) corresponding,
respectively, to the idempotents e10 and e01 in (2.3). Let us explicitly describe these modules.

Let V(k) be the kth homogeneous component Sym k(V ) of the symmetric algebra Sym(V )
of the space V . Thus, k = 2× spin and dim(V(k)) = k + 1. Consider the tensor product
V ⊗ Ah̄. It is nothing but the free right Ah̄-module Ah̄⊕2. We can imagine the matrix L (as
well as any polynomial in it) as an operator acting from V to V ⊗ Ah̄ which can be presented
in a basis (v1, v2) as follows:

(v1, v2) �→ (v1 ⊗ a + v2 ⊗ c, v1 ⊗ b + v2 ⊗ d).

Following [GS] we define the projective module El(h̄), l = 1, 2 as a quotient of V ⊗ Ah̄
over its submodule generated by the elements

v1 ⊗ a + v2 ⊗ c − v1 ⊗ λl v1 ⊗ b + v2 ⊗ d − v2 ⊗ λl. (2.4)

Also, the module E1(h̄) (resp. E2(h̄)) can be identified with the image of the idempotent e10

(resp. e01) which consists of the elements

(v1 ⊗ a + v2 ⊗ c − v1 ⊗ λm)f1 + (v1 ⊗ b + v2 ⊗ d − v2 ⊗ λm)f2 ∀f1, f2 ∈ Ah̄
wherem = 2 forE1(h̄) andm = 1 forE2(h̄). (In a similar way we can associate left projective
modules with the idempotent in question.)

Now, consider the compact form of the NC variety in question. Changing the basis

x = i(d − a)/2 = −ia y = i(b + c)/2 z = (b − c)/2

we get the following commutation relations between the new generators:

[x, y] = h̄z [y, z] = h̄x [z, x] = h̄y (2.5)

and the defining equation of the NC variety reads now

� = (x2 + y2 + z2) = α.

Thus, assuming K = R and α > 0 we get a NC analogue of the sphere, namely, the
algebra

Ah̄ = U(su(2)h̄)/{x2 + y2 + z2 − α}.
However, the eigenvalues of equation (2.2) are imaginary (for positive α and real and small
enough h̄) and as usual we should consider the idempotents and related projective modules
over the field C.

Completing this section we want to stress that equations (2.4) are covariant w.r.t. the
action of the group G where G = SU(2) or G = SL(2) depending on the form (compact or
not) we are dealing with.

3. Derived quantum line bundles

In this section we discuss the problem of extension of the matrix L = L(1) to the higher spins
and suggest a method of finding the corresponding CH identities.

First, consider the commutative case. Let

�(L) = L⊗ id + id ⊗ L ∈ M4(Ah̄) (3.1)

be the first extension of the matrix L to the space V ⊗2. If λ1 and λ2 are (distinct) eigenvalues
of L and u1, u2 ∈ V are corresponding eigenvectors, then the spectrum of �(L) is

2λ1 (u1 ⊗ u1) 2λ2 (u2 ⊗ u2) λ1 + λ2 (u1 ⊗ u2 and u2 ⊗ u1)

where in brackets we indicate the corresponding eigenvectors.
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The commutativity of entries of the matrix L can be expressed by the relation

L1 · L2 = L2 · L1 where L1 = L⊗ id L2 = id ⊗ L.

Rewriting (3.1) in the form �(L) = L1 + L2 and taking into account the CH identity
for L

0 = (L− λ1 id)(L− λ2 id) = L2 − µL + ν id µ = λ1 + λ2 ν = λ1λ2

we find

�(L)2 = µ�(L) + 2L1 · L2 − 2ν id

�(L)3 = (µ2 − 4ν)�(L) + 6µL1 · L2 − 2µν id.

Note that µ = 0 if L ∈ sl(2). Upon excluding L1 · L2 from the above equations we get

�(L)3 − 3µ�(L)2 + (2µ2 + 4ν)�(L)− 4µν id = 0.

Substituting the values of µ and ν we can present this relation as follows:

(�(L)− 2λ1)(�(L)− λ1 − λ2)(�(L)− 2λ2) = 0.

Thus, the minimal polynomial for�(L) is of degree 3.
A similar statement is valid for further extensions of the matrix L:

�2(L) = L⊗ id ⊗ id + id ⊗ L⊗ id + id ⊗ id ⊗ L

and so on. Namely, the matrix �k(L) satisfies the CH identity whose roots are k1λ1 + k2λ2

with k1 + k2 = k + 1, and the multiplicity of each root is Ck1
k+1. To avoid this multiplicity it

suffices to consider the symmetric component (denoted as L(k)) of the matrix �k+1(L) (see
below). Finally, the matrix L(k) has k + 1 pairwise distinct eigenvalues and its characteristic
polynomial equals to that of�k(L). Then by the same method as above we can associate with
this matrix k + 1 idempotents and corresponding projective modules. Thus, we have realized
the line bundles Ek1,k2 under the guise of projective modules.

Now, let us pass to the NC variety in question. With matricesL1 and L2 the commutation
relation (1.2) takes the form

L1 · L2 − L2 · L1 = h̄(L1P − PL1) (3.2)

where P is the usual flip. So, we cannot apply the commutative binomial formula for calculating
the powers of �k(L). This prevents us from calculating the CH identities for the matrices
�k(L) with the above method.

Instead, we will calculate the CH identities directly for the symmetric components of these
matrices, also denoted L(k), k = 2, 3, . . . and defined as

L(k) = kS(k)L1S
(k)

where S(k) is the Young symmetrizer in V ⊗k . Taking into consideration that the element S(k)L1

is already symmetrized w.r.t. all factors apart from the first one we can represent the matrix
L(k) as

L(k) = S(k)L1(id + P 12 + P 12P 23 + · · · + P 12P 23 · · ·Pk−1k)

where P ii+1 is the operator transposing the ith and (i + 1)th factors in the tensor product of
spaces.

Remark 3. We can treat the matrixL(k) as an operator acting fromV ⊗k to V ⊗k⊗Ah̄ assuming
it to be trivial on all components except for V(k) ⊂ V ⊗k .

In case k = 2 we have the following proposition.
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Proposition 4. The CH identity for the matrix L(2) restricted to the symmetric component V(2)
of the space V ⊗2 is

L3
(2) − 4h̄L2

(2) + 4(α + h̄2)L(2) − 8h̄α id = 0. (3.3)

Proof. By definition the matrix L(2) has the form

L(2) = 1
2 (id + P 12)L1(id + P 12).

Taking into consideration that L2 = P 12L1P
12 we rewrite (3.2) as follows:

L1P
12L1P

12 − P 12L1P
12L1 = h̄(L1P

12 − P 12L1). (3.4)

Now we need some powers of the matrix L(2). We find (L ≡ L1, P ≡ P 12):

L2
(2) = 1

2 (id + P)L(id + P)L(id + P)

L3
(2) = 1

2 (id + P)L(id + P)L(id + P)L(id + P).

Then taking into account (2.2) and (3.4) we have the following chain of identical
transformations for L3

(2):

2L3
(2) = (id + P)L(id + P)L(id + P)L(id + P)

= (id + P)L[PLPL + PL2 + LPL + L2](id + P)

= 2(id + P)L[LPL + h̄PL − α id](id + P)

= 4h̄(id + P)LPL(id + P)− 4α(id + P)L(id + P)

= 4h̄(id + P)L(id + P)L(id + P) − 4h̄(id + P)

× (h̄L− α id)(id + P)− 4α(id + P)L(id + P)
= 8h̄L2

(2) − 8(h̄2 + α)L(2) + 8h̄α(id + P).

Cancelling the factor 2 we come to the result

L3
(2) − 4h̄L2

(2) + 4(α + h̄2)L(2) − 4h̄α(id + P) = 0. (3.5)

To complete the proof it remains to note, that after restriction to the symmetric component
V(2) of the space V ⊗2 the last term in (3.5) turns into 8h̄α id and we come to (3.3). �

Now, let us exhibit the matrix L(2) in a basis form. In the base

v20 = v⊗2
1 v11 = v1 ⊗ v2 + v2 ⊗ v1 v02 = v⊗2

2

of the space V(2) this matrix has the following form:

L(2) =
( 2a 2b 0
c a + d b

0 2c 2d

)
=
( 2a 2b 0
c 0 b

0 2c −2a

)
(3.6)

(the latter equality holds in virtue of the condition a + d = 0).
In the following we prefer to deal with another basis in the space V(2). Namely, by putting

(v20, v11, v02) = (u20, u11, u02)P

with transition matrix

P =
( 0 1 0

1/2 0 −1/2
−i/2 0 −i/2

)

we transform L(2) into the form

L(2) = PL(2)P−1 = 2

( 0 −z y

z 0 −x
−y x 0

)
. (3.7)
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The matrix L(2) is expressed through the generators (x, y, z) and it is better adapted to
the compact form of the NC varieties in question. However, it satisfies the same NC version
of CH identity (2.2).

Remark 5. By straightforward checking we can see that the roots of (3.3) are

λ20 = h̄−
√
h̄2 − 4α = 2λ1λ11 = 2h̄ = 2(λ1 + λ2) and λ02 = h̄ +

√
h̄2 − 4α = 2λ2.

(3.8)

These quantities are eigenvalues of the matrix (3.6) which is the restriction of the matrix
(3.1) to the symmetric part of the space V ⊗2. A similar restriction of the matrix (3.1) to the
skewsymmetric part of the space V ⊗2 gives rise to the operator

v1 ⊗ v2 − v2 ⊗ v1 → (v1 ⊗ v2 − v2 ⊗ v1)⊗ (a + d) = 0.

Thus, the matrix (3.1) on the whole space V ⊗2 has four distinct eigenvalues (those of (3.8)
and 0) and in contrast with the commutative case its minimal polynomial cannot be of the third
degree.

As for higher extensions L(k), k > 2, of the matrix L the following holds.

Proposition 6. For any integer k > 2 there exists a polynomial

Pk(x) = λk +
k∑
i=1

ak−iλk−i

with numerical coefficients such that Pk(L(k)) = 0. Moreover, its roots are

λk1k2 = k1λ1 + k1k2(λ1 + λ2) + k2λ2 k1 + k2 = k.

This formula can be deduced from [Ro]. We will present its q-analogue in [GLS].
Similar to the basic case the roots of the polynomial Pk will be called eigenvalues of the

corresponding matrix L(k).
Now, let us assume the eigenvalues λ20, λ11, λ02 to be also pairwise distinct. Then, by

using the same method as above we can introduce the idempotent

e20 = (λ11 id − L(2))(λ02 id − L(2))/(λ11 − λ20)(λ02 − λ20)

and similarly e11 and e02 corresponding to the eigenvalues λ11, and λ02, respectively. The
related q.l.b. (projectiveAh̄-modules) will be denotedE20(h̄), E11(h̄) andE02(h̄), respectively.

Assuming the eigenvalues of the polynomials Pk, k > 2 (see proposition 6) to be also
pairwise distinct we can associate with the matrix L(k) k + 1 idempotents

ek1k2 k1 + k2 = k k > 0

and the corresponding q.l.b. Ek1,k2(h̄). For k = 0 we set e00 = 1. The corresponding q.l.b. is
E0,0(h̄).

Remark 7. Let us note that if we do not fix any value of � we can treat the elements eij as those
ofM2(U(sl(2)h̄))⊗R where R is the field of fractions of the algebraic closure Z[U(sl(2)h̄)].

Remark 8. Note that there exists a natural generalization of the above constructions giving
rise to some ‘braided varieties’ and corresponding ‘line bundles’ as follows. Let R be a
Hecke symmetry of rank 2 (cf [G]). Then the matrix L satisfying the RE with such R obeys an
equation analogous to (2.1) but with appropriate trace and determinant (cf [GPS]). Introducing
the quotient algebra Ah̄ in a similar way we treat it as a braided analogue of a NC sphere.
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Then, by defining the extensionsL(k) as above (but with a modified meaning of the symmetric
powers of the space V ) we can define a family of q.l.b. over such a ‘NC braided variety’ as
above. This construction will be presented in detail in [GLS].

Now, we pass to computing the quantities tr ek1k2 .

Proposition 9. The following relation holds:

tr ek1k2 = 1 +
(k1 − k2)h̄√
h̄2 − 4α

.

A proof of this formula will be given in [GLS] in a more general context including its
q-analogue.

4. Isomorphic modules and multiplicative structure

First of all we discuss the problem of isomorphism between the projective modules introduced
above (namely, q.l.b.). There exists a number of definitions of isomorphic modules over
C

∗-algebras (cf [W]). However, for the algebras in question we use the following definition
motivated by [R].

Definition 10. We say that two projective modulesM1 ⊂ A⊕m andM2 ⊂ A⊕n over an algebra
A corresponding to the idempotents e1 and e2, respectively are isomorphic iff there exist two
matrices A ∈ Mm,n(A) and B ∈ Mn,m(A) such that

AB = e1 BA = e2 A = e1A = Ae2 B = e2B = Be1.

Proposition 11. The q.l.b. E1,1(h̄) is isomorphic to E0,0(h̄).

Proof. It is not difficult to see that

e11 = (
L2
(2) − 2h̄L(2) + 4α id

)/
(4α).

Then, by straightforward calculations we check that for the idempotent e11 the following
relation holds:

(4α)−1

(( 4a2 + 2bc 4ab 2b2

2ca 2cb + 2bc −2ba
2c2 −4ac 2cb + 4a2

)
− 2h̄

( 2a 2b 0
c 0 b

0 2c −2a

)
+ 4α

( 1 0 0
0 1 0
0 0 1

))

= (4α)−1

(−2b
2a
2c

)
(c −2a −b) .

Passing to the matrix L(2) we get

e11 = (4α)−1(L2
(2) − 2h̄L(2) + 4α id

) = α−1

(
x

y

z

)
(x y z)

(So, the idempotent e11 defines the following operator in A⊕3:(
f1

f2

f3

)
�→ (α)−1

(
x

y

z

)
(x · f1 + y · f2 + z · f3).)

It remains to say that if we put A = (α)−1(x y z) and B =
(x
y
z

)
we satisfy the above

definition with e1 = e00 and e2 = e11. �
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In general, the problem of isomorphism between modules (1.6) is open. We can only
conjecture that the q.l.b. (1.6) are isomorphic to each other.

Remark 12. If the algebra A is not commutative the first two relations of the definition 10 do
not yield the equality tr e1 = tr e2. However, proposition 9 implies that

tr ek1,k2 = tr ek1+l,k2+l .

Now, we can introduce an associative product on the set of q.l.b. in a natural way by
setting

Ek1,k2(h̄) · El1,l2(h̄) = Ek1+l1,k2+l2(h̄).

This product is evidently associative and commutative. In particular, we have

E1(h̄) ·E2(h̄) = E1,1(h̄) E1(h̄) · E1(h̄) = E2,0(h̄) E2(h̄) · E2(h̄) = E0,2(h̄).

The family of the modules Ek1,k2(h̄) equipped with this product is denoted prePic(Ah̄)
and called prePicard semigroup of the NC sphere.

Assuming that the q.l.b. (1.6) are indeed isomorphic to each other we can naturally define
the Picard group Pic(Ah̄) of the NC sphere as the classes of isomorphic modules Ek1,k2(h̄)

equipped with the above product.
So, under this assumption, the Picard group Pic(Ah̄) of the NC sphere is at most Z (recall

that Pic(S2) = Z).
Now, consider the problem of computing the pairing

〈 , 〉 : prePic(Ah̄)⊗K0 → K. (4.1)

Such a pairing plays a key role in the Connes version of the index formula. (Usually, one
considersK0 instead of prePic but we restrict ourselves to ‘quantum line bundles’. Moreover,
assuming the conjecture formulated before remark 12 to be true we can replace prePic in
formula (4.1) by Pic.) Let us recall that K0 stands for the Grothendieck ring of the category
of irreducible modules of the algebra in question8. In the spirit of the NC index (cf [L]) the
pairing (4.1) can be defined as

〈Ek1,k2(h̄), U〉 = trπU(tr(ek1,k2)) (4.2)

where tr(ek1,k2) ∈ Ah̄ and πU : Ah̄ → End(U) is the representation corresponding to the
irreducible U.

It is not difficult to see that the result of the pairing of the module Ek1,k2(h̄) with the
irreducible Uj of the spin j is equal to the quantity n tr ek1,k2 evaluated at the point

α = −h̄2(n2 − 1)/4 where n = dimUj = 2j + 1. (4.3)

In particular, we have

〈E0,0(h̄), Uj 〉 = n 〈E1,0(h̄), Uj 〉 = n + 1 〈E0,1(h̄), Uj 〉 = n− 1

〈E2,0(h̄), Uj 〉 = n + 2 〈E0,2(h̄), Uj 〉 = n− 2

(here we assume that
√
n2h̄2 = nh̄). More generally, if n > k1 + k2 we have

〈Ek1,k2(h̄), Uj 〉 = k1 − k2 + n.

This formula follows immediately from proposition 9. There exists a q-analogue of this
formula which will be considered in [GLS].
8 By this we mean the Grothendieck ring of the algebra U(su(2)h̄) or what is the same U(su(2)) since h̄ does not
matter here. However, any irreducible U(su(2)h̄)-module defines a relation between h̄ and α (see (4.3)) and, therefore,
the factors in formula (4.2) are not independent.
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5. Projective modules in differential calculus

In this section we define NC analogues of some vector bundles arising in differential calculus
on a classical sphere such as tangent vector bundle and those of differential forms. Also, we
suggest a new way of defining the NC analogue of the de Rham complex.

Let us begin with a NC analogue of the tangent bundle T (S2) on the sphere. Since this
bundle is complementary to the normal one and since the latter bundle (treated as a module)
is nothing but E1,1, it is natural to define the NC analogue of T (S2) as

T (Ah̄) = E2,0(h̄) + E0,2(h̄).

We call it a tangent module on the NC sphere.
This module can be represented by the equation Im e11 = 0. It is equivalent to the relation

u20x + u11y + u02z = 0. (5.1)

This means that the module T (Ah̄) is realized as the quotient of the free moduleA⊕3
h̄ generated

by the elements

u20 u11 u02 (5.2)

over the submodule {Cf, f ∈ Ah̄} where C is the lhs of (5.1).
In the classical case relation (5.1) is motivated by an operator meaning of the tangent

space. Namely, if generators (5.2) are treated as infinitesimal rotations of the sphere9 and the
symbols x, y, z in (5.1) are considered as operators of multiplication on the corresponding
functions, then the element C treated as an operator is trivial. This allows us to equip the
tangent module T (S2) with an operator meaning by converting any element of this module
into a vector field. Thus, we get the action

A ⊗ T (S2) → A A = K(S2)

which consists in applying a vector field to a function.
However, if we assign the same meaning to generators (5.2) and to x, y, z on the NC

sphere (by setting u20 = [x, ·] and so on and considering x, y, z as operators of multiplication
on the corresponding generator) then the element C treated as an operator is no longer trivial.
This is the reason why we are not able to provide the tangent module T (Ah̄) with a similar
action on the algebra Ah̄.

Remark 13. We want to stress that the space of derivations of the algebraAh̄ often considered
as a proper NC counterpart of the usual tangent space does not have any Ah̄-module structure.
So, for a NC variety which is a deformation of a classical one we have a choice: which
properties of the classical object we want to preserve. In our approach we prefer to keep the
property of the tangent space to be a projective module. In the same manner we will treat the
terms of the NC de Rham complex (see below).

Passing to the cotangent bundle T ∗(S2) or otherwise stated to the space of the first-order
differentials �1(S2) we see that it is isomorphic to T (S2). Therefore, it is defined by the
same relation (5.1) but with another meaning of generators (5.2): now we treat them as the
differentials of the functions x, y and z, respectively:

u20 = dx u11 = dy u02 = dz.

This gives us the motivation to introduce a cotangent module T ∗(Ah̄) on the NC sphere
similar to the tangent one but with a new meaning of generators (5.2). We will also use the
notation�1(Ah̄) for the module T ∗(Ah̄).
9 By means of the Kirillov bracket we can represent these rotations as u20 = {x, ·} and so on.
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Up to now we have no modifications in the relations defining the tangent and cotangent
objects. Nevertheless, it is no longer so for the NC counterpart of the second-order differential
space �2(S2). In the classical case this space is defined by

u11z− u02y = 0 −u20z + u02x = 0 u20y − u11x = 0 (5.3)

with the following meaning of generators (5.2)

u20 = dy ∧ dz u11 = dz ∧ dx u02 = dx ∧ dy. (5.4)

In a concise form we can rewrite (5.3) as

(u20, u11, u02) · L(2) = 0 (5.5)

with L(2) given by (3.7).
However, in the NC case we should replace (5.5) by

(u20, u11u02) · L(2) = 2h̄(u20, u11u02)

or in a more detailed form

u11z− u02y = h̄u20 −u20z + u02x = h̄u11 u20y − u11x = h̄u02.

This is motivated by the fact that 2h̄ becomes an eigenvalue of the matrix L(2). Let us denote
the corresponding quotient module �2(Ah̄). Of course, we can represent generators (5.2) in
the form (5.4) but now it does not have any sense.

We emphasize that we do not treat elements of the Ah̄-modules �i(Ah̄), i = 1, 2
as differential forms. By contrast, we preserve the basic property of the A-modules
�i(A), i = 1, 2 to be projective.

This allows us to conclude that the Ah̄-modules �i(Ah̄), i = 1, 2 contain (at least for
a generic h̄) just the same irreducible SU(2) components as A-modules �i(A), i = 1, 2.
Explicitly these components are listed in [AG].

By using this property we can constructSU(2)-covariant isomorphisms of K[[h̄]]-modules

ψi(h̄) : �i(Ah̄) → �i(A)⊗ K[[h̄]]

where the tensor product is completed in h̄-adic topology (we can also impose the property
ψi(h̄) = id mod h̄). It is well known that a similar isomorphism ψ0(h̄) : Ah̄ → A ⊗ K[[h̄]]
exists due to the deformation nature of the algebra Ah̄.

Then we introduce a NC analogue

0 → �0(Ah̄) = Ah̄ → �1(Ah̄) → �2(Ah̄) → 0 (5.6)

of the classical de Rham complex by drawing the differential d from the classical complex
(tensorized by K[[h̄]]) via the above isomorphisms:

dNC = ψ(h̄)−1 dψ(h̄) ψ(h̄) = {ψi(h̄)}.
Note that the property d2

NC = 0 is fulfilled automatically whereas the Leibniz rule fails
(as well as the multiplicative structure of the space of all differential forms10).

We want to complete the paper with the following short survey of the existing approaches
to differential calculus on NC algebras.

Remark 14. Actually there are two different generalizations known of differential calculus
associated with NC algebras. The first one makes use of the so-called universal differential
algebra. This algebra is generated by elements of the initial algebra A and formal differentials
10 In the classical case the multiplicative structure of the space �(A) = ⊕

�i(A) is ensured by the fact that all
one-sided modules over a commutative algebra are automatically two-sided. However, this is not the case for the
algebras in question.
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da, a ∈ A without any commutation rule between them looking like the classical one. The
only Leibniz rule is used in order to transpose a differential from left to right of a ‘function’
and vice versa. However, the universal differential algebra is much bigger than the classical
one even if the algebra A is commutative such as the coordinate ring of a given regular variety
(cf for example [GVF]). Moreover, the components of such a differential algebra are not
finitely generated modules. Finally, the associated de Rham complex differs drastically from
the classical one.

If an algebra A is equipped with a Yang–Baxter operator compatible in some sense with
the product, one usually tries to reduce the universal differential algebra to the ‘classical size’
(assuming it to be a deformation of a commutative algebra). In order to do this one looks for a
transposition rule between ‘functions’ and differentials arising from the Yang–Baxter operator
(once vector fields are defined their transposing rule with ‘functions’ and differentials is also
of interest). If such an operator R is involutary (R2 = id) it is easy to do. However, if it is
not so, keeping the classical size of differential algebra is not in general compatible with the
Leibniz rule. We refer the reader to the paper [FP] where this problem is discussed w.r.t. the
algebra of functions on a quantum group and to the paper [AG] where a quantum sphere is
considered.

Note that the algebra Ah̄ is not equipped with any Yang–Baxter operator different from
the usual flip and the second method is useless for reducing the corresponding universal
differential algebra. Above we have suggested one more method of constructing a NC
analogue of the de Rham complex associated with the algebra Ah̄ which makes use of some
projective modules. This method allows us to preserve the ‘classical size’ of the terms of the de
Rham complex. Moreover, its cohomology coincides with the classical one by construction.
However, this is done at the expense of the Leibniz rule and the multiplicative structure of
the space �(Ah̄) = ⊕

�i(Ah̄). As we have said above, one always has to choose which
properties of a classical object are to be preserved.
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